Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.284
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573225

RESUMO

Autophagy serves as a stress response pathway by mediating the degradation of cellular material within lysosomes. In autophagy, this material is encapsulated in double-membrane vesicles termed autophagosomes, which form from precursors referred to as phagophores. Phagophores grow by lipid influx from the endoplasmic reticulum into Atg9-positive compartments and local lipid synthesis provides lipids for their expansion. How phagophore nucleation and expansion are coordinated with lipid synthesis is unclear. Here, we show that Faa1, an enzyme activating fatty acids, is recruited to Atg9 vesicles by directly binding to negatively charged membranes with a preference for phosphoinositides such as PI3P and PI4P. We define the membrane-binding surface of Faa1 and show that its direct interaction with the membrane is required for its recruitment to phagophores. Furthermore, the physiological localization of Faa1 is key for its efficient catalysis and promotes phagophore expansion. Our results suggest a positive feedback loop coupling phagophore nucleation and expansion to lipid synthesis.


Assuntos
Autofagossomos , Ácidos Graxos , Macroautofagia , Autofagia , Ácidos Graxos/metabolismo , Retroalimentação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
2.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536036

RESUMO

Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.


Assuntos
Endossomos , Proteínas de Saccharomyces cerevisiae , Proteínas rab de Ligação ao GTP , Proteínas Ativadoras de ras GTPase , Transporte Biológico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vacúolos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38452761

RESUMO

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucarióticas/metabolismo , Redes Neurais de Computação , Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478017

RESUMO

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas Munc18/metabolismo , Ligação Proteica , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478018

RESUMO

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Assuntos
Vesículas Citoplasmáticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/análise , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
6.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448162

RESUMO

The septin cytoskeleton is extensively regulated by posttranslational modifications, such as phosphorylation, to achieve the diversity of architectures including rings, hourglasses, and gauzes. While many of the phosphorylation events of septins have been extensively studied in the budding yeast Saccharomyces cerevisiae, the regulation of the kinases involved remains poorly understood. Here, we show that two septin-associated kinases, the LKB1/PAR-4-related kinase Elm1 and the Nim1/PAR-1-related kinase Gin4, regulate each other at two discrete points of the cell cycle. During bud emergence, Gin4 targets Elm1 to the bud neck via direct binding and phosphorylation to control septin hourglass assembly and stability. During mitosis, Elm1 maintains Gin4 localization via direct binding and phosphorylation to enable timely remodeling of the septin hourglass into a double ring. This mutual control between Gin4 and Elm1 ensures that septin architecture is assembled and remodeled in a temporally controlled manner to perform distinct functions during the cell cycle.


Assuntos
Citoesqueleto , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Septinas , Ciclo Celular , Mitose , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/genética
7.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
8.
Nature ; 626(7999): 653-660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267580

RESUMO

Two newly duplicated copies of genomic DNA are held together by the ring-shaped cohesin complex to ensure faithful inheritance of the genome during cell division1-3. Cohesin mediates sister chromatid cohesion by topologically entrapping two sister DNAs during DNA replication4,5, but how cohesion is established at the replication fork is poorly understood. Here, we studied the interplay between cohesin and replication by reconstituting a functional replisome using purified proteins. Once DNA is encircled before replication, the cohesin ring accommodates replication in its entirety, from initiation to termination, leading to topological capture of newly synthesized DNA. This suggests that topological cohesin loading is a critical molecular prerequisite to cope with replication. Paradoxically, topological loading per se is highly rate limiting and hardly occurs under the replication-competent physiological salt concentration. This inconsistency is resolved by the replisome-associated cohesion establishment factors Chl1 helicase and Ctf4 (refs. 6,7), which promote cohesin loading specifically during continuing replication. Accordingly, we found that bubble DNA, which mimics the state of DNA unwinding, induces topological cohesin loading and this is further promoted by Chl1. Thus, we propose that cohesin converts the initial electrostatic DNA-binding mode to a topological embrace when it encounters unwound DNA structures driven by enzymatic activities including replication. Together, our results show how cohesin initially responds to replication, and provide a molecular model for the establishment of sister chromatid cohesion.


Assuntos
60634 , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromátides/metabolismo , 60634/metabolismo , DNA Fúngico/biossíntese , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática
9.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180475

RESUMO

Lateral diffusion barriers compartmentalize membranes to generate polarity or asymmetrically partition membrane-associated macromolecules. Budding yeasts assemble such barriers in the endoplasmic reticulum (ER) and the outer nuclear envelope at the bud neck to retain aging factors in the mother cell and generate naïve and rejuvenated daughter cells. However, little is known about whether other organelles are similarly compartmentalized. Here, we show that the membranes of mitochondria are laterally compartmentalized at the bud neck and near the cell poles. The barriers in the inner mitochondrial membrane are constitutive, whereas those in the outer membrane form in response to stresses. The strength of mitochondrial diffusion barriers is regulated positively by spatial cues from the septin axis and negatively by retrograde (RTG) signaling. These data indicate that mitochondria are compartmentalized in a fission-independent manner. We propose that these diffusion barriers promote mitochondrial polarity and contribute to mitochondrial quality control.


Assuntos
Divisão Celular , Mitocôndrias , Saccharomyces cerevisiae , Corpo Celular , Membranas Mitocondriais , Saccharomyces cerevisiae/citologia
10.
PLoS Genet ; 19(11): e1011044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956214

RESUMO

In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.


Assuntos
DNA Helicases , Instabilidade Genômica , RNA Helicases , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas Repressoras/metabolismo , Pontos de Checagem do Ciclo Celular , Replicação do DNA
11.
Nature ; 621(7979): 627-634, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37527780

RESUMO

The presequence translocase of the mitochondrial inner membrane (TIM23) represents the major route for the import of nuclear-encoded proteins into mitochondria1,2. About 60% of more than 1,000 different mitochondrial proteins are synthesized with amino-terminal targeting signals, termed presequences, which form positively charged amphiphilic α-helices3,4. TIM23 sorts the presequence proteins into the inner membrane or matrix. Various views, including regulatory and coupling functions, have been reported on the essential TIM23 subunit Tim17 (refs. 5-7). Here we mapped the interaction of Tim17 with matrix-targeted and inner membrane-sorted preproteins during translocation in the native membrane environment. We show that Tim17 contains conserved negative charges close to the intermembrane space side of the bilayer, which are essential to initiate presequence protein translocation along a distinct transmembrane cavity of Tim17 for both classes of preproteins. The amphiphilic character of mitochondrial presequences directly matches this Tim17-dependent translocation mechanism. This mechanism permits direct lateral release of transmembrane segments of inner membrane-sorted precursors into the inner membrane.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nucleic Acids Res ; 51(18): 9703-9715, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37548404

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) uses a DNA template with similar sequence to restore genetic identity. Allelic DNA repair templates can be found on the sister chromatid or homologous chromosome. During meiotic recombination, DSBs preferentially repair from the homologous chromosome, with a proportion of HR events generating crossovers. Nevertheless, regions of similar DNA sequence exist throughout the genome, providing potential DNA repair templates. When DSB repair occurs at these non-allelic loci (termed ectopic recombination), chromosomal duplications, deletions and rearrangements can arise. Here, we characterize in detail ectopic recombination arising between a dispersed pair of inverted repeats in wild-type Saccharomyces cerevisiae at both a local and a chromosomal scale-the latter identified via gross chromosomal acentric and dicentric chromosome rearrangements. Mutation of the DNA damage checkpoint clamp loader Rad24 and the RecQ helicase Sgs1 causes an increase in ectopic recombination. Unexpectedly, additional mutation of the RecA orthologues Rad51 and Dmc1 alters-but does not abolish-the type of ectopic recombinants generated, revealing a novel class of inverted chromosomal rearrangement driven by the single-strand annealing pathway. These data provide important insights into the role of key DNA repair proteins in regulating DNA repair pathway and template choice during meiosis.


Assuntos
Reparo do DNA , Meiose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Proteínas de Ciclo Celular/metabolismo , Aberrações Cromossômicas , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Recombinases/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
EMBO Rep ; 24(9): e57372, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37497662

RESUMO

How cells coordinate their metabolism with division determines the rate of cell proliferation. Dynamic patterns of metabolite synthesis during the cell cycle are unexplored. We report the first isotope tracing analysis in synchronous, growing budding yeast cells. Synthesis of leucine, a branched-chain amino acid (BCAA), increases through the G1 phase of the cell cycle, peaking later during DNA replication. Cells lacking Bat1, a mitochondrial aminotransferase that synthesizes BCAAs, grow slower, are smaller, and are delayed in the G1 phase, phenocopying cells in which the growth-promoting kinase complex TORC1 is moderately inhibited. Loss of Bat1 lowers the levels of BCAAs and reduces TORC1 activity. Exogenous provision of valine and, to a lesser extent, leucine to cells lacking Bat1 promotes cell division. Valine addition also increases TORC1 activity. In wild-type cells, TORC1 activity is dynamic in the cell cycle, starting low in early G1 but increasing later in the cell cycle. These results suggest a link between BCAA synthesis from glucose to TORC1 activation in the G1 phase of the cell cycle.


Assuntos
Aminoácidos , Saccharomyces cerevisiae , Ciclo Celular , Aminoácidos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Leucina/biossíntese , Glucose/metabolismo , Fase G1
14.
Nature ; 621(7979): 620-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344598

RESUMO

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/ultraestrutura , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
15.
Nature ; 617(7961): 608-615, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165185

RESUMO

Peroxisomes are organelles that carry out ß-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction1. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts2, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes3. Current models postulate a large pore formed by transmembrane proteins4; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS5,6. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels7.


Assuntos
Proteínas de Membrana , Peroxinas , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peroxinas/química , Peroxinas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/química , Peroxissomos/metabolismo , Transição de Fase , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo
16.
Nature ; 618(7963): 188-192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165187

RESUMO

The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Saccharomyces cerevisiae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Lipídeos , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Sinaptotagminas/química , Sinaptotagminas/metabolismo
17.
Nature ; 617(7962): 747-754, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165189

RESUMO

While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution1-3. Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation4, our ongoing experiment consists of three metabolic treatments5-anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 104 times larger (approximately mm scale) and about 104-fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.


Assuntos
Aclimatação , Evolução Biológica , Agregação Celular , Saccharomyces cerevisiae , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Aerobiose , Oxigênio/análise , Oxigênio/metabolismo , Forma Celular , Agregação Celular/fisiologia
18.
Biol Chem ; 404(8-9): 807-812, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37155927

RESUMO

Most mitochondrial proteins are nuclear-encoded and imported by the protein import machinery based on specific targeting signals. The proteins that carry an amino-terminal targeting signal (presequence) are imported via the presequence import pathway that involves the translocases of the outer and inner membranes - TOM and TIM23 complexes. In this article, we discuss how mitochondrial matrix and inner membrane precursor proteins are imported along the presequence pathway in Saccharomyces cerevisiae with a focus on the dynamics of the TIM23 complex, and further update with some of the key findings that advanced the field in the last few years.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Transporte Proteico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo
19.
Nature ; 618(7964): 411-418, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258668

RESUMO

The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm1-3. The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors4,5. Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC.


Assuntos
Transporte Ativo do Núcleo Celular , Poro Nuclear , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fenilalanina , Glicina , Simulação por Computador , Solventes
20.
Science ; 380(6643): 376-381, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104589

RESUMO

Synthetic biology enables the design of gene networks to confer specific biological functions, yet it remains a challenge to rationally engineer a biological trait as complex as longevity. A naturally occurring toggle switch underlies fate decisions toward either nucleolar or mitochondrial decline during the aging of yeast cells. We rewired this endogenous toggle to engineer an autonomous genetic clock that generates sustained oscillations between the nucleolar and mitochondrial aging processes in individual cells. These oscillations increased cellular life span through the delay of the commitment to aging that resulted from either the loss of chromatin silencing or the depletion of heme. Our results establish a connection between gene network architecture and cellular longevity that could lead to rationally designed gene circuits that slow aging.


Assuntos
Senescência Celular , Genes Sintéticos , Longevidade , Saccharomyces cerevisiae , Senescência Celular/genética , Redes Reguladoras de Genes , Longevidade/genética , Modelos Genéticos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...